Signed, Spoken Languages and Human Actions: Implications for a Neural Model of Human Language

David P. Corina Ph.D.

Depts of Linguistics & Psychology
Center for Mind and Brain
University of California, Davis
dpcorina@ucdavis

- Sign language processing lies at the intersection of many research domains:
- Language
- Vision
- Motor Control
- Human Action Processing

We should expect a neural model that incorporates and integrates these systems.

Outline

- Studies of sign languages and human actions can help guide us to a model of human language.
- I propose a three-pathway model to help us understand sign language processing
- Action, Meaning and Form
- I'll provide examples from my research to support the validity of this model
- Work in progress.

My Proposal

Ventral and Dorsal Visual Streams

Recognition of forms: ventral visual pathway

My Proposal

Recognition of body form

 Should expect specialized temporal-ventral systems sensitive to body forms.

- MEG study
 - body form violations
- fMRI study
 - Body form and handshape recognition

MEG: Body Form Violations

Method: MEG

 Task: Possible/Impossible Judgments

Subject's 13 hearing, 13 deaf native signers

Deaf signers are very sensitive to human forms

Deaf show faster responses and better discrimination

MEG topographic maps

MEG Results

Components:

- M-100
- M-130

 Occipital-temporal focus in signers

fMRI: Body Form (EBA)

EBA (left: -45, -74, -3; Right 48, -68, 0)

Downing et al (2001)

Extra-striate Body Area Localizer

Downing et al (2001)

Sign Recognition Test (implicit)

Task: Is sign produced with one or two hands?

EBA (red) and Sign (blue)

Subject 1

Subject 2

Overlapping activations
Signs (blue) and EBA localizer (red)

Ventral Stream cont.

Ventral Area MT+

 fMRI study of Implied motion, moving signs, and ASL stills

Sign Movement: Area MT+

Contrast values from Deaf signers activation (n=6) from MT+ ROI ([+/-48, -70, 6],10mm radius sphere) for three conditions; Moving Signs vs. Fix., Static Sign vs. Fix., Implied Actions vs. Fix.

Dorsal Stream

Perceptual Invariance

"Through-plane spatial transformation"

A form of perceptual invariance, NOT sign specific

Sign versus Gesture Categorization

Signs and gestures filmed from different viewpoints

Results

Overall RT

Deaf are faster than hearing subjects.

Deaf and hearing respond to sign and gestures equivalently.

RT as a function of prime

PRIME TARGET

Front-view Front-view Left-view Front-view Right view Front-view

Deaf and hearing show same pattern of results

Dorsal Stream

Action Execution/Perception

- The hypothesis that we make use of representation involved in production in comprehension.
 - Motor theory of speech perception
 - Mirror neuron theories
 - Embodiment

Predicts we should may see overlapping brain areas for sign production and comprehension

Meta-Analysis Common Parietal Activations

Y plane

-48 -46 33 IPL/SMG

Common processing during sign production and sign comprehension

Embodiment

Decide whether the form is an ASL sign or a pseudo sign Does it matter if the signer shown is right or left handed?

16 Native, 20 Non-Native 21 hearing interpreters (L2)

Lexical Decision and Handedness Congruency

ASL Signs

ASL Pseudo Signs

Only hearing interpreters (L2) showed an effect. Limited to pseudo-signs.

Motor simulation as basis of sign language understanding?

- Likely multiple levels
- Somatic level
 - Action execution/motor planning forward models
- Lexical semantic level
 - Deaf signer are "encapsulated" may be inefficient to utilize such processes
 - Novice learners ?

The Third Stream

Where in the brain does differentiation occur? fMRI Study: ASL vs. Gesture

Gesture **ASL**

Task: Is action performed with one or two hands?

ASL vs. Gesture in Deaf Signers

[ASL vs. Fixation]
[GESTURE vs. Fixation]

Sign _____ Gesture ____

Posterior-Superior Temporal Sulcus p < .001 uncorr. 10 voxel cluster

Language selectivity in posterior STS

Sign versus Gesture

Sign _____ Gesture ____ Voice versus Non-Language

Belin et al. Voice-selective areas in human auditory cortex. Nature 403, (2000)

Words versus laughs, sighs, grunts, onomatopoeia, and other non-vocal sounds

Into the Linguistic Realm

Superior and middle/inferior temporal lobe structures (form-meaning interfaces).

These regions are shared by spoken and sign languages

Common "linguistic combinetrics"

Lexical access, syntax etc.

Sentence processing in Sign (BSL) and Speech (English) activates highly similar areas in left and right hemisphere

ASL sentence processing: ERP effects of encountering non-linguistic actions.

The boys sleeps in his ... BED

LEMON
"blick"

scratches face

Grand-average waveforms at the OZ site (Negative down, Positive up...sorry Steve)

Grosvald, Gutierrez, Hafer, & Corina (2012) Brain and Lang.

Relation to Speech Processing

Signed Languages

Spoken Languages

Human Actions

Conclusions

Brain representation for language represents the intersection of multiple domains.

Studies of signed languages, human actions and speech can guide through this complex system.

Inferior (VD) Parietal Lobe Summary

- Interpretation of human actions
- Specialization for sign form and semantics

Language selectivity in posterior STS

Sign versus Gesture

Sign _____ Gesture ____ Voice versus Non-Language

Belin et al. Voice-selective areas in human auditory cortex. Nature 403, (2000)

Words versus laughs, sighs, grunts, onomatopoeia, and other non-vocal sounds

Hand Localizer

Corina et al (in prep.)

Sign (blue) and Hands (green)

Subject 1 Subject 2

Overlapping activations of signs (blue) and Hand localizer (green)

Speech: Decomposition and reconstruction

Speech recognition:

- hierarchical series of steps
- recoding of the acoustic wave form
- extraction of feature components
- Matching into sub-lexical representation of word and eventually word forms themselves.
- Activation of conceptual-semantic forms.

Recent Model (Poeppel et al 2008)

Speech perception at the interface of neurobiology and linguistics D. Poeppel et al. 1073 (b) (a) 7000 frequency 3000 2000 1000 time c (d) X [+ cons, -son] [-cons, +son] [+ cons, -son] (c) [- cor [-cont] lar/phar lar/phar lar/phar place place place glot glot [-ATR] dorsal coronal dorsal phonological primal sketch [-voice] [-back, -high, +low] [-voice] [+ant]

Phil. Trans. R. Soc. B (2008) 363, 1071–1086

How do we map the physical form of a sign's action onto a meaning representation?

But we are faced with a myriad of human actions

How do we recognize and make sense of these multiple forms? Is sign special?

I don't think so

A tacit assumption; sign recognition will entail similar processing stages as words.

Extraction of feature components which feed into sub-lexical representation of sign and eventually word forms themselves.

