Cantonese tone production performance of mainstream school children with hearing impairment

Karen Cheung, Ada Lau, Joffee Lam, and Prof. Kathy Lee

The 2014 Symposium on Sign Bilingualism and Deaf Education
20.06.2014
Acknowledgement

Jockey Club Sign Bilingualism and Co-enrolment in Deaf Education Programme (2006-2013)

捐助機構 Funded by:

香港賽馬會慈善信託基金
The Hong Kong Jockey Club Charities Trust
Cantonese tone
(Matthews & Yip, 1994; Yip, 2002; Yue-Hashimoto, 1972)

Pitch levels
- High
- Mid
- Low

Contour/Register
- Level
- Rising
- Falling

Level tones have short variants of stop-final syllables

Categorization
- Tone 1: High level
- Tone 2: High rising
- Tone 3: Mid level
- Tone 4: Low falling
- Tone 5: Low rising
- Tone 6: Low level
Different fundamental frequency (F0) of the six Cantonese tones on the vowel [a]

(Lee et al., 2002)

- Tone signals lexical information
 - Same syllable, different tones \rightarrow different meanings
Tone perception

Normal hearing population

• **Tone 1 contrasts** → Most successfully perceived
 (Barry et al., 2002; Ciocca & Lui, 2003; Lee, Chiu, & van Hasselt, 2002a; Lee et al., 2002b)
 – Distinctively high average F0

• **Small F0 differences** → tone discrimination difficulty
 (Barry et al., 2002; Ciocca & Lui, 2003; Lee et al., 2002a, b)
 – Close proximity of F0 at onset
 • Tone 2/4; Tone 2/5; Tone 4/5; Tone 5/6
 – Same contour but with small F0 difference
 • Tone 3/6
Hearing impaired population

- In general conformed to that of normal hearing population
 - Close proximity of F0 at onset \rightarrow tone discrimination difficulty (Barry et al., 2002; Ciocca, Francis, Aisha, & Wong, 2002; Lee, van Hasselt, & Tong, 2010b; Tse & So, 2012; Wong & Wong, 2004)
 - Tone 1 \rightarrow fewest errors
 - Tone 6 \rightarrow most difficult to identify (Ching, 1988; Wong & Wong, 2004)
 - Tone 5 contrasts \rightarrow most difficult for children and adults with cochlear implants (CI) (Barry et al., 2002; Lee, Cheung, Chan, & van Hasselt, 1997)
- Confusion between contour and level tones (Lee et al., 2002b; Wong & Wong, 2004; Tse & So, 2012)
 - Tone 1/2; Tone 1/5; Tone 2/6 ; Tone 3/5
Tone production

Normal hearing population

(Cheung & Abberton, 2000; Tse, 1978; Tse, 1992)

- Tone 1 emerges the earliest
- Tone 4/5/6 → differentiated in later stage of acquisition
- Rising tones → difficult for some children
Tone production

Hearing impaired population

• Tone 4 & 5 \rightarrow most difficult for children with CI (Lee, Tong, & van Hasselt, 2007; Lee, van Hasselt, & Tong, 2010a)

• Normal hearing children \rightarrow able to master all tones correctly at 2;0 (Lee, et al., 2010a)
 – HI children with CI continue to make errors

• They produce tones matching the F0 features of Tone 1 (Khouw & Ciocca, 2006)

• Little acoustic differences

• Smaller range of average F0
• Tone perception and production related
 – Similarities in the findings between tone perception studies and tone production studies
 – HI population tend to perceive and produce some of the tones better
Mainstreaming

• “The process of educating the deaf not within the artificial confines of an institution but within the more natural structure of the public school system” (Wamae & Kang’ethe-Kamau, 2004, p.33)

• Higher speech production scores for HI children (English speaking) with CI studying in mainstream classroom (Tobey et al., 2003; Most, 2007)

• Hong Kong?
 – No investigation on speech production ability of Mandarin- or Cantonese-speaking HI children
 – Unknown → Effect of mainstreaming on Cantonese tone production
Research questions

• Limited studies on tone production

<table>
<thead>
<tr>
<th>V</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH children</td>
<td>Children with milder degree of hearing loss</td>
</tr>
<tr>
<td>Profound HI children</td>
<td>HA users</td>
</tr>
<tr>
<td>CI users</td>
<td>Overall tone production accuracy</td>
</tr>
<tr>
<td></td>
<td>Tone error pattern</td>
</tr>
</tbody>
</table>

• Effect of mainstreaming still remains unknown for HI children’s tone production
Research questions

• Intrinsic differences of the 6 tones?
 – Tone 1 \rightarrow better performance than \rightarrow Tone 4/5/6

• Effect of degree of hearing loss?
 – Milder degree of hearing loss \rightarrow better tone production due to better tone perception

• Role of mainstreaming?
 – Longer exposure \rightarrow better performance

• Tone error pattern?
 – By HI children with various degrees of hearing loss
Participants

<table>
<thead>
<tr>
<th>HL level</th>
<th>Mild</th>
<th>Moderate</th>
<th>MS</th>
<th>Severe</th>
<th>Profound</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of students</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>14</td>
<td>22</td>
<td>87</td>
</tr>
</tbody>
</table>

Mean age
- Mild: 8.75
- Moderate: 9.75
- MS: 9.25
- Severe: 9.08
- Profound: 10

Mean grade
- Mild: 4.3
- Moderate: 3.3
- MS: 3.8
- Severe: 3.4
- Profound: 3

Mean year of mainstreaming
- Mild: 7
- Moderate: 5.9
- MS: 6.8
- Severe: 5.5
- Profound: 4.4
Material & Procedure

• The Hong Kong Cantonese Articulation Test (HKCAT) (Cheung, Ng & To, 2006)
 – Picture naming task

• Administrators: 2 speech therapists

• Soundproof/segregated room in a school setting

• Recorded with microphone placed 30 – 40 cm away from the participant’s mouth

• Recordings rated by 3 native Cantonese raters in a quiet office (rated 2 times in a 3-month interval)
 – 1 ST who had administered HKCAT to the HI children
 – 2 researchers with 3 years of experience on HI children and had phonetic training
 – 0 = incorrect; 1 = correct (Total = 0 - 3; combine all 3 raters)
Result - Descriptive

• Rater reliability
 – Inter-rater Agreement = 92.9% (ICC = .984)
 – Intra-rater Agreement = 95.5% - 98.1% (ICC = .95 - .99)

• Tone production accuracy by hearing loss group

<table>
<thead>
<tr>
<th>Hearing loss group</th>
<th>Word level (Level 1) (n = 6003)</th>
<th>Subject level (Level 2) (n = 87)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Mild</td>
<td>2.99 (.15)</td>
<td>2.99 (.02)</td>
</tr>
<tr>
<td>Moderate</td>
<td>2.94 (.35)</td>
<td>2.94 (.11)</td>
</tr>
<tr>
<td>Moderate–severe</td>
<td>2.92 (.36)</td>
<td>2.92 (.08)</td>
</tr>
<tr>
<td>Severe</td>
<td>2.95 (.26)</td>
<td>2.95 (.04)</td>
</tr>
<tr>
<td>Profound</td>
<td>2.62 (.83)</td>
<td>2.62 (.44)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hearing loss group</th>
<th>n</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>1242</td>
<td>18</td>
</tr>
<tr>
<td>Moderate</td>
<td>1242</td>
<td>18</td>
</tr>
<tr>
<td>Moderate–severe</td>
<td>1035</td>
<td>15</td>
</tr>
<tr>
<td>Severe</td>
<td>966</td>
<td>14</td>
</tr>
<tr>
<td>Profound</td>
<td>1518</td>
<td>22</td>
</tr>
</tbody>
</table>

Note: Tone production accuracy score ranged from .0–3.0.

Cheung et al. (2014)
Result – Multi-level analysis

• Multi-level analysis with three predictors:
 – Tone (word level) (n=6003)
 – Year of mainstreaming (subject level) (n=87)
 – Hearing loss level (subject level) (n=87)
Result - Multi-level analysis

A random intercepts and slopes model for predicting tone production accuracy of participants with hearing impairment

Cheung et al. (2014)

<table>
<thead>
<tr>
<th>Predictors (Level)</th>
<th>F-value</th>
<th>Numerator df</th>
<th>Denominator df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone (L1)</td>
<td>5.928</td>
<td>5</td>
<td>421.467</td>
<td><.001</td>
</tr>
<tr>
<td>HL group (L2)</td>
<td>14.463</td>
<td>4</td>
<td>92.635</td>
<td><.001</td>
</tr>
<tr>
<td>Year of MainS (L2)</td>
<td>.448</td>
<td>1</td>
<td>92.635</td>
<td>.505</td>
</tr>
<tr>
<td>Tone (L1) * HL group (L2)</td>
<td>2.784</td>
<td>20</td>
<td>421.467</td>
<td><.001</td>
</tr>
<tr>
<td>Tone (L1) * Yr of MainS (L2)</td>
<td>.274</td>
<td>5</td>
<td>421.467</td>
<td>.927</td>
</tr>
<tr>
<td>Yr of MainS (L2) * HL group (L2)</td>
<td>1.825</td>
<td>4</td>
<td>92.635</td>
<td>.131</td>
</tr>
<tr>
<td>Tone (L1) * Yr of MainS (L2) * HL group (L2)</td>
<td>1.377</td>
<td>20</td>
<td>421.467</td>
<td>.128</td>
</tr>
</tbody>
</table>

Note: L1 and L2 denote word level and subject level predictors, respectively.
Result –
Post-hoc on significant main effects

Tone production accuracy on word level by tone

Cheung et al. (2014)
Result –
Post-hoc on significant main effects

Tone production accuracy on subject level by hearing loss level

![Graph showing average tone production accuracy by hearing loss level]

Cheung et al. (2014)
Result – Tone*HL interaction

Post-hoc multiple comparisons on the Tone*Hearing Loss group interaction effect at word level

<table>
<thead>
<tr>
<th>Hearing loss group</th>
<th>Tone pairs showing statistically significant difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild (n = 1242)</td>
<td>–</td>
</tr>
<tr>
<td>Moderate (n = 1242)</td>
<td>–</td>
</tr>
<tr>
<td>Moderate–Severe (n = 1035)</td>
<td>Tone 1 > Tone 6 (p < .0006)</td>
</tr>
<tr>
<td>Severe (n = 966)</td>
<td>Tone 1 > Tone 6 (p < .0006); Tone 1 > Tone 2 (p < .0006); Tone 1 > Tone 3 (p < .0006); Tone 1 > Tone 4 (p < .0006); Tone 1 > Tone 5 (p < .0006); Tone 1 > Tone 6 (p < .0006)</td>
</tr>
<tr>
<td>Profound (n = 1518)</td>
<td>–</td>
</tr>
</tbody>
</table>

Note: With Bonferroni correction, p < .05 / (5*15) = .000,667 is considered as statistical significance.

n denotes the total number of words produced by children in the hearing loss group. > denotes statistically significantly more accurate than.

Cheung et al. (2014)
Tone error pattern

Summary of tone production errors of children with various degrees of hearing loss (n=87)

<table>
<thead>
<tr>
<th>Target tones</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone 1 (n=2175)</td>
<td>22</td>
<td>42</td>
<td>5</td>
<td>9</td>
<td>24</td>
<td></td>
<td>41.627</td>
<td>4</td>
<td>.000**</td>
</tr>
<tr>
<td>Tone 2 (n=1131)</td>
<td>16</td>
<td>13</td>
<td>46</td>
<td>18</td>
<td>36</td>
<td></td>
<td>32.279</td>
<td>4</td>
<td>.000**</td>
</tr>
<tr>
<td>Tone 3 (n=522)</td>
<td>30</td>
<td>11</td>
<td>11</td>
<td>3</td>
<td>5</td>
<td></td>
<td>38.000</td>
<td>4</td>
<td>.000**</td>
</tr>
<tr>
<td>Tone 4 (n=1218)</td>
<td>30</td>
<td>64</td>
<td>47</td>
<td>28</td>
<td>18</td>
<td></td>
<td>35.273</td>
<td>4</td>
<td>.000**</td>
</tr>
<tr>
<td>Tone 5 (n=174)</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td></td>
<td>9.600</td>
<td>4</td>
<td>.048*</td>
</tr>
<tr>
<td>Tone 6 (n=783)</td>
<td>55</td>
<td>7</td>
<td>40</td>
<td>16</td>
<td>9</td>
<td></td>
<td>70.283</td>
<td>4</td>
<td>.000**</td>
</tr>
</tbody>
</table>

*Note: Chi-square test significant level: * p < .05. ** p < .01.*

Cheung et al. (2014)
Hearing loss effect – Relationship between HL & Tone accuracy

Mild > MS, severe, profound

- Produce more consistent F0 information and distinguish the 6 tones better (Khouw & Ciocca, 2006) because of better tone perception (Xu et al., 2011)
- Older?
- Receive longer mainstream education?

Profound < Mild, moderate, severe

- CI & HA provide limited assistance in tone production (Wong & Wong, 2004; Tse & So, 2012)
- Children with profound hearing loss benefits little from HA (Lee et al., 2008) or CI (Lee et al., 2010; Tse & So, 2012) on tone perception
- Relationship between tone perception & tone production??
Mainstreaming effect – Duration of mainstreaming and tone accuracy

• NO main / interaction effect of mainstreaming

 – Tone production ability was not found to increase with the number of years studying in a mainstream environment

 – Inconsistent to previous studies examining speech production in terms of segmental features (Tobey, Geers, Brenner, Altuna & Gabbert, 2003; Most, 2007)

[×] Mainstreaming does not have an effect on suprasegmental features (i.e. tone)

[×] Teaching strategy may be a less important factor than other factors (e.g., age of implantation, amplification mode etc.) (Connor, 2000)
Tone effect – intrinsic characteristics of Cantonese tones

• Tone 1 was produced significantly better
 – Level tone; pitch remains constant and no varying of tension of laryngeal muscle (Yip, 2002)
 – Frequency effect of level tone (Lee, 2012)
 – Tonal Sonority Hierarchy (Jiang-King, 1999): high tone more prominent; easier to perceive (Barry et al., 2002) \(\rightarrow\) easier to produce
 – Children’s shorter vocal tract & larynx height \(\rightarrow\) exhibit higher pitch than adults
Tone effect – intrinsic characteristics of Cantonese tones

• Tone 6 is the least accurate
 – Small average F0 separation with other low tones (tone 3, 4, 5) (Ciocca et al., 2002; Lee et al., 2010)
 – Mis-categorization of tone production due to unreliable subtle F0 change and average F0 produced by children with hearing impairment (Khouw & Ciocca, 2006)
 – Difficult to perceive (Wong & Wong, 2004)
 – Difficulty in contrasting individual level tones by differentiating average F0 ranges
Tone error pattern

• Confusions were made for similar F0 onset but not offset

 – Tone 2 & Tone 4: 1.36 Hz (Lee et al., 2010)
 (TD: Lee et al., 2002; HI: Lee et al., 2010)

 – Tone 2 & Tone 5: 7.46 Hz (Lee et al., 2010)
 (Both TD & HI: Barry et al., 2002; Ciocca & Lui, 2003; Ciocca et al., 2002)
Tone error pattern

• Majority of tone errors were from Profound HI children
 – Confusion patterns matched past perception studies:
 – Tone 2/4 (Lee, van Hasselt, Chiu & Cheung, 2002; Tse & So, 2012)
 – Tone 2/5 (Barry et al., 2002; Ciocca & Lui, 2003; Wong & Wong, 2004; Tse & So, 2012)
 – Tone 1/3/6 (Tse & So, 2012)

• Children can discriminate between level and contour tones
 – But lack fine control of muscles to produce different contrastive F0 patterns within the group of level/contour tones (Lee et al., 2002)
 Tone 1 vs. Tone 3 → Level tones
 Tone 2 vs. Tone 5 → Contour tones
Conclusion

• Intrinsic difference of tones affect children’s tone production accuracy
 – Similar F0 of tone pairs during onset caused confusion
 – Tone confusion patterns in perception studies coincide with the production error patterns

• Satisfactory tone production for children with mild to severe hearing loss but not profound hearing loss
 – Children with mild and moderate hearing loss significantly outperformed the children with higher degree of hearing loss
 – Tone remains a challenging aspect for children with profound hearing loss
 – HA or CI did not help much in tone production accuracy
Conclusion

• Mainstreaming the HI children in normal schools does not help much in the production of tone
 – Increase in number of years in normal schools does not boost tone production
 – More intensive training on tone production is needed
References

- Cheung, P., Ng, K. H., & To, C. (2006). Hong Kong Cantonese Articulation Test. Hong Kong: Language Information Sciences Research Centre and City University of Hong Kong.
THANK YOU!