Speech Perception and Oral Language Development of Deaf Children in Mainstream schools

Emily Lam, Tammy Lau, Wilson Yu Jockey Club Sign Bilingualism and Coenrolment in Deaf Education Programme 20th June, 2014

* + +

香港賽馬會慈善信託基金 The Hong Kong Jockey Club Charities Trus

捐助機構 Funded by

Acknowledgement

賽馬會手語雙語共融教育計劃 JOCKEY CLUB SIGN BILINGUALISM AND CO-ENROLMENT IN DEAF EDUCATION PROGRAMME

NoV.

捐助機構 Funded by:

香港賽馬會慈善信託基金 The Hong Kong Jockey Club Charities Trust

Vi

The impact of hearing impairment

"deaf-mute" ??

聾-啞??

HI has a negative impact on speech perception and oral language development!

** The role of hearing technology

The oral language ability of deaf children

- ① reports on the benefit of Cl and neonatal hearing screening (Yoshinaga-Itano et al., 1998; Moog, 2002; Blamey & Sarant, 2002; Nikolopoulos et al., 2004; Svirsky et al., 2004; Hayes et al., 2009; Niparko et al., 2010; Meinzen-Derr et al., 2011)
- Oral language abilities of deaf children are still diverse and with large individual differences (Blamey, 1998; Svirsky et al., 2000; Geers, 2006; Fitzpatrick, 2011)
- The language growth rate of deaf children over the time is also questionable (Delage & Tuller, 2007; Geers et al., 2008; Hayes, 2009)

Contributing factors

Demographic factors

14

- Residual hearing prior to CI (Geers, 2006; Niparko, 2010)
- Parent-child interactions (Niparko, 2010)
- Socioeconomic status (Niparko, 2010)
- Degree of HL (Sininger et al., 2010; Fitzpatrick, 2011)
- Parent education (Fitzpatrick, 2011)
- Age of receiving amplification / Cl (Geers, 2006; Nicholas & Geers, 2007; Sininger et al., 2010)
- Cochlear implant use (Sininger et al., 2010)
- Rehabilitation focus (Geers, 2006)
- Outcome measurement
 - Speech perception (Blamey, 1998; Blamey et al., 2001; Pisoni, 2004; DesJardin, 2009)

Speech perception

Va

Degree of Hearing Loss vs

Speech Perception Ability

- a process by which the speech is heard, interpreted and understood
- critical for early linguistic development

Assessing

the speech perception ability

- Contemporary speech perception measures
 - Speech feature perception test (DesJardin, 2009)
 - Closed-set / open-set word perception test (Blamey, 1998; Lee & van Hasselt, 2004)
 - Sentence speech perception test (Bench et al., 1979)
 - Tone perception test (Lee et al., 2002)

* + +

 Beware of the tester's lexical knowledge and speech production ability

V

 Speech perception abilities of deaf children are delayed relative to normal hearing children (Lee et al., 2002)

* * *

- A high correlation of speech perception ability & language development (Blamey et al., 1998; Blamey et al., 2001; Pisoni, 2004) than any demographic variable (Blamey et al., 2001)
- Better speech perception ability ⇒ better receptive language development ⇒ better expressive language development? (DesJardin et al., 2009)

Research Questions

1. What is the speech perception and oral language abilities of deaf children in HK?

* * *

2. What factor(s) may better predict oral language outcome in deaf children?

3. What is the development of oral language ability of deaf children over the time?

* + +

Methodology

Participants

- 111 Cantonese-speaking children
- Hearing loss: $PTA \ge 25dB$ in the better ear
- Studying in mainstream primary schools
 - 97 in mainstreaming program
 - 14 in sign-bilingual education program
- Performance IQ ≥ 70, no other diagnosed disabilities

Number of participants by groups

			Schoo	ol Grade			
Hearing Loss	P1	P2	P3	P4	P5	P6	Total
mild	2	5	1	3	4	5	20
moderate	4	4	4	3	2	3	20
Mod-sev	3	5	2	2	2	5	19
severe	5	6	2	3	0	3	19
profound	13	4	5	5	1	5	33
Total	27	24	14	16	9	21	111

Later Comparison (Lime point 1)

	Ν	Age of Diagnos	sis	ا am	Mode o plificati	f ion	Deaf parents	prog	gram
				nil	HA	CI	-	sign bilingual	main- streaming
mild	20	3;02		3	17			1	19
moderate	20	2;08			20				20
ms	19	2;09			19			1	18
severe	19	2;00			18	1	3	3	16
profound	33	1;01			9	24	3	9	24
Total	111			3	83	25	6	14	97

111

STY16

Measurements

1. Cantonese Lexical Neighborhood Test (CLNT)

Yuen, K. C. P., Ng, I. H. Y., Luk, B. P. K., Chan, S. K. W., Chan, S. C. S., Kwok, I. C. L. et al., (2008)

- 2. Cantonese tone identification test (CANTIT) Lee, K. Y. S. (2012)
- 3. Hong Kong Cantonese Oral Language Assessment Scale (HKCOLAS)

T'sou, B., Lee, T.H.-T., Tung, P., Man, Y., Chan, A., To, C.K.S. et al. (2006)

x++

Measurements

1. Cantonese Lexical Neighborhood Test (CLNT)

(Yuen, K. C. P., Ng, I. H. Y., Luk, B. P. K., Chan, S. K. W., Chan, S. C. S., Kwok, I. C. L. et al., 2008)

- 25 disyllabic words
- Live voice presentation
- correct recognition >> \checkmark

	WORD RECOGNITIO	<u>N TEST</u>
actice items:		
鉛筆		
· 蘋果 		
100.06	to the only	Audio + visual only
est item	Audio only	
、枕頭		
2. 好似		
3. 藍色		
4. 得意		
5. 滑梯		
6. 紙巾		
7. 烟味		
8. 魚蛋		
9. 茶點		
10. 提子		
11. 鴨仔		
12. 梘液		
13. 細佬		
14. 超人		
15. 贴紙		
16. 黑色		
17. 乾淨		
18. 水喉		
19. 蕃茄		
20. 爸爸		
21. 好味		
22. 牙膏		
23. 雪糕		
24 (1182)		

Total scor

Measurements

- 2. Cantonese tone identification test (CANTIT) (Lee, K. Y. S., 2012)
 - Research version
 - 75 monosyllabic words
 - Stimuli were presented through computer speaker
 - Scores from aided condition

* * *

Measurements

3. Hong Kong Cantonese Oral Language Assessment Scale (HKCOLAS)

(T'sou, B., Lee, T.H.-T., Tung, P., Man, Y., Chan, A., To, C.K.S. et al., 2006)

- Cantonese Grammar (CG)
- Textual Comprehension (TC)
- Word Definition (WD)
- Lexical-Semantic Relationship (LS)
- Story Retell (SR)
- Expressive Nominal Vocabulary (EV)

HKCOLAS testing procedure

- Changing the presentation mode
 Audio >> Visual (to simulate the daily circumstance)
- Test instructions and test items are the same as in the original format

Adapted by Centre for Sign Linguistics and Deaf Studies (CSLDS)

* + +

Results

* * *

Research Question 1

What is the speech perception and oral language ability of deaf children in HK?

V

Presentation of scores in HKCOLAS

Norm-referenced test

* * *

• Standard score was used

Performance in each subtest

	CG (Can. Grammar)	TC (Textual Comp.)	WD (Word Definition)	LS (Lexical- semantic)	SR (Story Retell)	EV (Exp. Vocab.)
mild	-0.59	0.03	0.02	-0.65	-1.04	0.02
moderate	-0.98	-0.61	-0.36	-0.83	-0.82	-1.21
ms	-1.94	-0.99	-0.31	-1.54	-1.47	-2.05
severe	-2.45	-1.70	-1.21	-1.85	-2.16	-2.28
profound	-2.90	-2.24	-1.30	-2.10	-2.96	-2.29
average	-1.90	-1.23	-0.71	-1.47	-1.84	-1.64

*The mean is displayed in standard scores 💥

SSV.

Performance in each subtest

	CG (Can. Grammar)	TC (Textual Comp.)	WD (Word Definition)	LS (Lexical-semantic)	SR (Story Retell)	EV (Exp. Vocab.)
mild	-0.59	0.03	0.02	-0.65	-1.04	0.02
moderate	-0.98	-0.61	-0.36	-0.83	-0.82	-1.21
ms	-1.94	-0.99	-0.31	-1.54	-1.47	-2.05
severe	-2.45	-1.70	-1.21	-1.85	-2.16	-2.28
profound	-2.90	-2.24	-1.30	-2.10	-2.96	-2.29
average	-1.90	-1.23	-0.71	-1.47	-1.84	-1.64

*The mean is displayed in standard scores 💥

SSV.

Statistical operation

Principal Component Analysis (PCA)

variable-reduction technique

4 a larger set of variables into a smaller set of 'artificial' variables

Statistical operation

Principal Component Analysis (PCA)

variable-reduction technique

4 a larger set of variables into a smaller set of 'artificial' variables

Statistical operation

Principal Component Analysis (PCA)

variable-reduction technique

4 a larger set of variables into a smaller set of 'artificial' variables

		Tota	al Variance Expla	ined	
		Initial Eigenvalue	2S	Extractio	on Sums of Squared Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance Cumulative %
CG	4.912	81.871	81.871	4.912	81.871 81.871
ТС	.411	6.851	88.722		
WD	.223	3.710	92.433		
LS	.204	3.404	95.837		
SR	.149	2.488	98.324		
EV	.101	1.676	100.000		

x++

Statistical operation - PCA

W/

	Component 1
CG	.947
TC	.910
WD	.805
LS	.920
SR	.920
EV	.920

	SR_ss_pt1	EV_ss_pt1	LD_hkcolas	compositescore _pt1
31	46	13	.0	.91
32	80	.28	.0	.53
33	-1.19	-5.13	1.0	70
34	.59	18	.0	.89
35	-1.25	.63	.0	1.04
36	26	-1.31	1.0	.26
37	-2.38	-2.02	1.0	10
38	13	05	1.0	.59
39	.01	.49	.0	1.27
40	13	-1.34	.0	.65
41	86	.41	.0	.86
12	2,28	50		1 85

161

28

Language Ability

1. Standard diagnostic criterion of HKCOLAS

Language Ability

2. Cluster analysis

Model Summary

Two step cluster using Schwarz's Bayesian Criterion (BIC) and Euclidean estimation

Language Ability

2. Cluster Analysis

Speech perception performance in 3 language ability groups

* + +

Research Question 2

What factor(s) may better predict oral language outcome in deaf children?

Va

Correlation

• Dependent variable

* + +

- composite score
- Independent variable
 - Degree of HL
 - With or without deaf parents
 - Type of hearing devices
 - Program type
 - Month of hearing diagnosis
 - CLNT scores
 - CANTIT scores

Correlation

• Spearman rank-order correlation

144

• Dependent variable: composite score

	Degree of HL	Deaf parents	Type of aid (HA) ^a	Type of aid (CI) ^a	Program type	Month of HL dx	CLNT	CANTIT
Correlation Coefficient	<u>470^{**}</u>	087	<u>.273**</u>	<u>335**</u>	<u>.307**</u>	.131	<u>.571**</u>	<u>.735**</u>
Sig. (2-tailed)	.000	.364	.004	.000	.001	.171	.000	.000

^a dummy variable indicating which hearing aid method the deaf child was using (none, HA, CI)
 ^b measured on 5 levels of hearing loss (mild, moderate, MS, severe and profound)
 * p< 0.05 ** p< 0.01

V

Multiple Regression Analysis

Variables	В	Std. Error	β	R ² change	F(6,104)	Collinearity statistics (VIF)
Program	051	.221	018	.486***	16.421***	1.278
HL	051	.066	082			2.262
HA ^a	090	.415	042			7.723
Cl ^a	034	.481	015			9.604
CANTIT	.046	.008	.688***			2.946
CLNT	007	.019	036	and a to		2.099

Note. Effect was measured by VIF = variance inflation factors (VIF with values less than 10 showed that the model did not suffer from multicollinearity problems) ^a dummy variable indicating which hearing aid method the deaf child was using (none, HA, CI) *** p< 0.001

* + +

Research Question 3

What is the development of oral language ability of deaf children over the time?

V

Participants in time point 2

**Demographics (55 participants)

	Ν	J	Age of dx		Mod amplifi	e of catio	on		De pare	eaf ents		pro	gram	
				nil	H	Ą	(CI			si bilir	gn Igual	M strea	ain- aming
mild	20	8	3;02 3;03	3	17	8					1	1	19	7
moderate	20	9	2;08 2;04		20	9							20	9
ms	19	7	2;09 3;01		19	7					1	1	18	6
severe	19	11	2;00 1;03		18	11	1		3	2	3	3	16	8
profound	33	20	1;01 1;01		9	4	24	16	3	1	9	9	24	11

** 3 Language Ability Groups

• With reference to their composite scores at TP2, participants were categorized into respective language ability groups

22
13
20

3 Language Ability Groups

• Individual change across language ability groups

Time Point 1 (N=55)	Regress (5%)	keep up (71%)	Progress (24%)
Age Appropriate (17)	1	16	
Mild-moderate LD (11)	2	5	4
Severe LD (27)		18	9
	W. The second	prikers dese up	store and a

Change of scores from TP1 to TP2

		CG (Cantonese Grammar)	TC (Textual Comp.)	WD (Word Definition)	LS (Lexical- semantic)	SR (Story Retell)	EV (Expressive Vocab.)
Age Appropriate (17)	TP1	0.03	0.23	0.31	-0.49	-0.10	0.12
	TP2	0.21	0.44	0.37	0.15	0.05	0.24
Mild-moderate LD (11)	TP1	-1.59	-1.06	-0.44	-1.24	-1.47	-1.01
	TP2	-1.21	-0.10	0.06	-1.32	-1.35	-0.50
Severe LD (27)	TP1	-3.62	-2.68	-1.77	-2.48	-3.63	-3.10
	TP2	-3.02	-1.93	-1.42	-2.26	-3.45	-3.01

Change of scores from TP1 to TP2

(Repeated Measure ANOVA)

		CG * (Cantonese Grammar)	TC ** (Textual Comp.)	WD (Word Definition)	LS (Lexical- semantic)	SR (Story Retell)	EV (Expressive Vocab.)
Age Appropriate (17)	TP1	0.03	0.23	0.31	-0.49	-0.10	0.12
	TP2	0.21	0.44	0.37	0.15	0.05	0.24
Mild- moderate LD (11)	TP1	-1.59	-1.06	-0.44	-1.24	-1.47	-1.01
	TP2	-1.21	-0.10	0.06	-1.32	-1.35	-0.50
Severe LD (27)	TP1	-3.62	-2.68	-1.77	-2.48	-3.63	-3.10
	TP2	-3.02	-1.93	-1.42	-2.26	-3.45	-3.01

Vi

SW.

Conclusions

- Align with some previous findings, the performance of deaf children is behind the level of children with normal hearing in general (Blamey et al., 1998; Wake et al., 2004; Fitzpatric et al., 2011)
- Performed poorer in:
 - CG > SR > EV > LS > TC > WD
- Three language groups:
 - Age appropriate: 35%
 - Mild-moderate LD: 18%
 - Severe LD: 47%

Conclusions

 Among the various predictors, tone perception was significantly correlated with oral language outcome (48.6% of variance)

V

Degree of HL

* + +

- With or without deaf parents
- Type of hearing devices
- Program type
- Month of hearing diagnosis
- CLNT scores
- CANTIT scores

Conclusions

- Oral Language performance after 3 years time:
 - Age appropriate (40%)
 - Mild-moderate language delay (24%)
 - Severe language delay

* * *

60%

- Significant improvement was seen in Cantonese Grammar and Textual Comprehension.
- What factors contribute to the improvement is left to be answered.

References

- Bench, J., Doyle, J. & Greenwood, K.M. 1987. A standardization of the BKB/A Sentence Test for children in comparison with the NALCID Sentence Test and CAL-PBM Word Test. *Australian Journal of Audiology*, 9, 39-48.
- Blamey P., Sarant J., Serry T., Wales R., James C. & Barry J. (1998). Speech Perception and Spoken Language in Children with Impaired Hearing. *ICSLP*, *98*, 2615-2618.
- Blamey P.J., Sarant, J.Z., Paatsch, L.E., Barry, J.G., Bow, C.P., Wales, R.J. (2001). Relationships Among Speech Perception, Production, Language, Hearing Loss, and Age in Children with Impaired Hearing. *Journal of Speech, Language, and Hearing Research,* 44, 264-285.
- Blamey P. & Sarant J. (2002). Speech Perception and Language Criteria for Paediatric Cochlear Implant Candidature. *Audiology & Neurotology, 7, 2,* 114-121.
- Blamey, P. J. (2003). Development of spoken language by deaf children. In M. Marschark, & P. E. Spencer (Ed.), Oxford handbook of deaf studies, language, and education (pp. 232-246). New York: Oxford University Press
- Delage, H., & Tuller, L. (2007). Language development and mild-to-moderate hearing loss: Does language normalize with age? *Journal of Speech, Language, and Hearing Research, 50*, 1300-1313.
- DesJardin J.L., Ambrose, S.E. Martinez A.S., & Eisenberg L.S. (2009). Relationships between Speech Perception Abilities and Spoken Language Skills in Young Children with Hearing Loss. *International Journal of Audiology, 48,* 248-259.
- Fitzpatrick E.M., Crawford L. Ni A. & Durieux-Smith A. (2011). A Descriptive Analysis of Language and Speech Skills in 4- to 6-Yr-Old Children with Hearing Loss. *Ear & Hearing, 32,* 605-616.
- Geers, A. E., Nicholas, J. G., & Sedey, A. L. (2003). Language skills of children with early cochlear implantation. *Ear & Hearing, 24*(1S), 46S-58S
- Geers (2006) Factors Influencing Spoken Language Outcomes in Children following Early Cochlear Implantation. *Adv Otorhinolaryngol,* 64, 50-65.
- Geers, A., Tobey, E., Moog, J., & Brenner, C. (2008). Long-term outcomes of cochlear implantation in the preschool years: From elementary grades to high school. *International Journal of Audiology, 47*(Suppl. 2), S21-S30.
- Hayes, H., Geers, A. E., Treiman, R., & Moog, J. S. (2009). Receptive vocabulary development in deaf children with cochlear implants: Achievement in an intensive auditory-oral educational setting. *Ear & Hearing*, *30*(1), 128-135.
- Lee, K.Y.S., Sung, N.C. & van Hasselt, C.A. (2002). Tone Perception Ability of Cantonese-Speaking Children. *Language and Speech, 45,* 387-406.
- Lee & van Hasselt (2004) Long-term outcome on Spoken Word Recognition Ability of Young Children with Cochlear Implants. International Congress Series, 1273, 300-303.

Vi

• Lee, K. Y. S. (2012). Cantonese Tone Identification Test

References

- Leigh, G. (2008). Changing parameters in deafness and deaf education. In M. Marschark, & P. C. Hauser (Eds.), *Deaf cognition: Foundations and Outcome* (pp. 24-51). New York: Oxford University Press, Inc.
- Meinzen-Derr, J., Wiley, S., & Choo, D. I. (2011). Impact of early intervention on expressive and receptive language development among young children with permanent hearing loss. *American Annals of the Deaf, 155*(5), 580-591.
- Moog, J. S., & St Louis, M. (2002). Changing expectations for children with cochlear implants. *The Annals of Otology, Rhinology and Laryngology,* 111(5), 138-142.
- Nicholas, J. G., & Geers, A. E. (2007). Will they catch up? The role of age at cochlear implantation in the spoken language development of children with severe to profound hearing loss. *Journal of Speech, Language, and Hearing Research, 50*, 1048-1062.
- Nikolopoulos, T. P., Dyar, D., Archbold, S., & O'Donoghue, G. M. (2004). Development of spoken language grammar following cochlear implantation in prelingually deaf children. *Archives of Otolaryngology- Head & Neck Surgery, 130*, 629-633.
- Niparko, J. K., Tobey, E. A., Thal, D. J., Eisenberg, L. S., Wang, N., Quittner, A. L., & Fink, N. E. (2010). Spoken language development in children following cochlear implantation. *JAMA: Journal of American Medical Association*, 303(15), 1498-1506.
- Pisoni (2004) Speech Perception in Deaf Children with Cochlear Implants. *From Sound to Sense, June 11-June 13,* B133-B147.
- Sininger (2010) Auditory Development in Early Amplified Children: Factors Influencing Auditory-Based Communication Outcomes in Children with Hearing Loss. *Ear & Hearing*, *31*, *2*, 166-185.
- Svirsky, M. A., Robbins, A. M., Kirk, K. I., Pisoni, D. B., & Miyamoto, R. T. (2000). Language development in profoundly deaf children with cochlear implants. *Psychological Science*, *11*(2), 153-158.
- Svirsky, M. A., Teoh, S., & Neuburger, H. (2004). Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation. *Audiology & Neuro-Otology, 9*, 224-233.
- T'sou, B., Lee, T.H.-T., Tung, P., Man, Y., Chan, A., To, C.K.S. *et al.* (2006). Hong Kong Cantonese Oral Language Assessment Scale
- Wake, M., Hughes, E.K., Poulakis, Z., Collins, C. & Rickards, F.W. (2004). Outcomes of Children with Mild-Profound Congenital hearing Loss at 7 to 8 years: A Population Study. *Ear & Hearing*, *25*, 1-8.
- Yoshinaga-Itano et al. (1998) Language of Early- and Later-identified Children with Hearing Loss. *Pediatrics, 102, 5,* 1161-1171.

Vi

 Yuen, K. C. P., Ng, I. H. Y., Luk, B. P. K., Chan, S. K. W., Chan, S. C. S., Kwok, I. C. L. et al., (2008). Cantonese Lexical Neighborhood Test.

* * *

Centre for Sign Linguistics and Deaf Studies (CSLDS) http://www.cuhk.edu.hk/cslds/jcslco/

Tel: 3943 1135 Fax: 3943 1136

Thank You!

